OUTLINE

• ASPIRATION: DEFINITION & INCIDENCE
• WHO’S AT RISK?
• CURRENT PRE-OP FASTING GUIDELINES
• FASTING VOCABULARY: LOST IN TRANSLATION?
• EFFECTS OF STARVATION
• CURRENT TRENDS: PRE-OP CHO LOADING
• THE BOTTOM LINE
ASPIRATION

• **DEFINITION:** ASPIRATION IS A RARE BUT POTENTIALLY DEVASTATING COMPLICATION OF GENERAL ANAESTHESIA

• IT OCCURS SECONDARY TO THE PASSIVE REGURGITATION OF GASTRIC CONTENTS, WHICH PASS INTO THE LUNGS AND INDUCE AN INFLAMMATORY RESPONSE

• **INCIDENCE**
 • 2011: RISK OF ASPIRATION IN ADULTS 1:2000–3000 FOR ELECTIVE SURGERY AND AS HIGH AS 1:600–800 FOR EMERGENCY SURGERY (NAP-4)
 • OVER 50% OF AIRWAY-RELATED DEATHS IN ANAESTHESIA WERE AS A CONSEQUENCE OF ASPIRATION, OUTWEIGHING THE MUCH FEARED CAN’T INTUBATE CAN’T VENTILATE (CICV) SCENARIO
IN CASE OF BOREDOM
WHO’S AT RISK OF ASPIRATION?

PATIENT FACTORS:
A. FULL STOMACH
 . EMERGENCY SURGERY
 . INADEQUATE FASTING TIME
 . GASTROINTESTINAL OBSTRUCTION

B. DELAYED GASTRIC EMPTYING
 . SYSTEMIC DISEASES, INCLUDING DIABETES MELLITUS AND CHRONIC KIDNEY DISEASE
 . RECENT TRAUMA
 . OPIOIDS
 . RAISED INTRA-CRANIAL PRESSURE
 . PREVIOUS GASTROINTESTINAL SURGERY
 . PREGNANCY (INCLUDING ACTIVE LABOUR)
PATIENT FACTORS CONTINUED

C. INCOMPETENT LOWER OESOPHAGEAL SPHINCTER
 - HIATUS HERNIA
 - RECURRENT REGURGITATION
 - DYSPEPSIA
 - PREVIOUS UPPER GASTROINTESTINAL SURGERY
 - PREGNANCY

D. OESOPHAGEAL DISEASES
 - PREVIOUS GASTROINTESTINAL SURGERY
 - MORBID OBESITY
ASPIRATION RISK

SURGICAL FACTORS

. UPPER GASTROINTESTINAL SURGERY
. LITHOTOMY OR HEAD DOWN POSITION
. LAPAROSCOPY
. CHOLECYSTECTOMY
ASPIRATION RISK

ANAESTHETIC FACTORS

- LIGHT ANAESTHESIA
- SUPRA-GLOTTIC AIRWAYS: FIRST GENERATION DEVICES
- POSITIVE PRESSURE VENTILATION
- LENGTH OF SURGERY > 2 H
- DIFFICULT AIRWAY
| Patient factors | Increased gastric content | Intestinal obstruction
 | | | Non-fasted
 | | | Drugs
 | | | Delayed gastric emptying
 | Lower oesophageal sphincter incompetence | Hiatus hernia
 | | | Gastro-oesophageal reflux
 | | | Pregnancy
 | | | Morbid obesity
 | | | Neuromuscular disease
 | Decreased laryngeal reflexes | Head injury
 | | | Bulbar palsy
 | Gender | Male
 | Age | Elderly
 | Operation factors | Procedure | Emergency
 | | Laparoscopic
 | Position | Lithotomy
 | Anaesthetic factors | Airway | Difficult intubation
 | | Gas insufflation
 | Maintenance | Inadequate depth of anaesthesia

WHAT’S THE BIG DEAL?!

• NAP4 FOUND THE FAILURE OF RISK ASSESSMENT TO BE A COMMON THEME
• OF THE 23 CASES OF PRIMARY ANAESTHESIA-RELATED ASPIRATION, ONLY 10 (43.4%) WERE THOUGHT AT THE TIME OF SURGERY TO HAVE HAD ANY RISK FACTORS FOR ASPIRATION
• HOWEVER, RETROSPECTIVELY 9 OF THE 11 PATIENTS INITIALLY DESCRIBED AS HAVING NO RISK FACTORS HAD AT LEAST ONE RISK FACTOR FOR ASPIRATION
• INDEED OF ALL THE PATIENTS WHO ASPIRATED, 27 OF 29 PATIENTS HAD IDENTIFIABLE RISK FACTORS (93.1%)
PRE-OPERATIVE FASTING

- MARKED DIFFERENCE IN THE PASSAGE OF SOLIDS VS LIQUIDS

Figure 2. Gastric emptying curves for a solid (99mTc-labelled omelette, ▼) and liquid (111In-labelled soft drink, ▼) meal in a healthy volunteer. Liquid emptying begins instantly in an exponential fashion, while the linear solid emptying begins after the lag phase.
CURRENT FASTING GUIDELINES

• THE ½ LIFE OF CLEAR FLUIDS IN THE STOMACH IS 10 – 20 MINUTES

• RESIDUAL GASTRIC VOLUME AFTER 2 HOURS IS LESS IN PATIENTS INGESTING SMALL AMOUNT OF CLEAR FLUIDS THAN PATIENTS FASTING

• 3 HOURS IS RECOMMENDED IN OUR LOCAL GUIDELINE TO ALLOW SOME FLEXIBILITY WITH THEATRE SCHEDULING, ALTHOUGH TWO HOURS IS AN ACCEPTABLE FASTING TIME
JHH_JHCH_BH_0057: Fasting prior to anaesthesia / sedation

GUIDELINE
This guideline does not replace the need for the application of clinical judgment in respect to each individual patient.

Adults
- 6 hours for food
- 3 hours for water (water is stipulated for simplicity)*

Note: Patient may take a small amount of water less than 2 hours pre-procedure to swallow medication

Infants- 6 months to Children 14 years of age
- 6 hours for food/breast milk/formula
- 2 hours for clear fluids

Infants- Less than 6 months old
- 4 hours solids
- 4 hours formula
- 3 hours breast milk
- 2 hours clear fluids

Examples of Clear Fluids
Water, apple juice (no other fruit juices), electrolyte supplements, non-carbonated clear fluids, black tea, black coffee.
The new machine improved theatre productivity by 30%, so long as the milk and propofol didn’t get confused.
FASTING VOCABULARY: LOST IN TRANSLATION?

• “NPO”
• ”NBM”
• MEDICATIONS?? (F)
• “CLEAR FLUIDS”
• FASTING ≠ STARVATION
EFFECTS OF STARVATION

• 6-8 HOURS IS OUR NORMAL OVERNIGHT FAST
• BEYOND THAT = STARVATION = PATIENT DISCOMFORT
• 10 - 15 HOURS IS THE AVERAGE “FASTING” TIME OF OUR SEMI-URGENT (MOSTLY ORTHOPAEDIC) PATIENTS
• INDUCES A STRESS RESPONSE: NET BREAKDOWN OF GLYCOGEN, FAT & PROTEIN
• ANABOLIC ⇢ CATABOLIC
• HYPERGLYCAEMIA IN PRESENCE OF INCREASED INSULIN LEVELS = INSULIN RESISTANCE (MARKER OF STRESS)
CURRENT TRENDS (FUTURE DIRECTIONS)

- PRE-OP CARBOHYDRATE LOADING REDUCES INSULIN RESISTANCE
- IMPORTANTLY COMPLETE GASTRIC EMPTYING OCCURS WITHIN 2 HOURS OF INGESTION
- MOST IMPORTANTLY, NO INCREASED RISK OF ASPIRATION WHEN COMPARED WITH STANDARD 8-HOUR FAST (NBM FROM MIDNIGHT)
THE BOTTOM LINE

• ASPIRATION IS A RARE BUT POTENTIALLY CATASTROPHIC EVENT, SO RECOGNITION OF RISK FACTORS IS VITAL

• FASTING GUIDELINES: 6 HOURS FOR SOLIDS & 2 HOURS FOR CLEAR FLUIDS SHOULD BE ADHERED TO, BUT THESE ARE ONLY RELEVANT IN THE ELECTIVE SETTING & IN THOSE PATIENTS WITHOUT RISK FACTORS

• ANY DOUBT = RAPID SEQUENCE + ETT & AWAKE EXTUBATION

• PRE-OP ORAL CARBOHYDRATES HAVE AN IMPORTANT ROLE IN REDUCING STRESS RESPONSE ASSOCIATED WITH SURGERY & ARE ASSOCIATED WITH IMPROVED OUTCOMES
REFERENCES

• COOK TM, WOODALL N, FRERK C. FOURTH NATIONAL AUDIT PROJECT OF THE ROYAL COLLEGE OF ANAESTHETISTS AND DIFFICULT AIRWAY SOCIETY. MAJOR COMPLICATIONS OF AIRWAY MANAGEMENT IN THE UNITED KINGDOM. REPORT AND FINDINGS. LONDON: ROYAL COLLEGE OF ANAESTHETISTS, 2011

• ASAI T. WHO IS AT RISK OF PULMONARY ASPIRATION? BRITISH JOURNAL OF ANAESTHESIA 2004; 93: 497–500

• BENINGTON S & SEVERN A. PREVENTING ASPIRATION AND REGURGITATION. ANAESTHESIA & INTENSIVE CARE MEDICINE 2007; 8;9: 368-372

• ROBINSON M & DAVIDSON A. ASPIRATION UNDER ANAESTHESIA: RISK ASSESSMENT & DECISION MAKING. CONTINUING EDUCATION IN ANAESTHESIA, CRITICAL CARE & PAIN ADVANCE ACCESS PUBLISHED NOVEMBER 21, 2013

• HELLSTROM PM, GRYBACK P & JACOBSSON H. THE PHYSIOLOGY OF GASTRIC EMPTYING. BEST PRACTICE & RESEARCH CLINICAL ANAESTHESIOLOGY VOL. 20, NO. 3, PP. 397E407, 2006

• BRADY M, KINN S, STUART P. PREOPERATIVE FASTING FOR ADULTS TO PREVENT PERIOPERATIVE COMPLICATIONS. COCHRANE DATABASE SYSTEMATIC REVIEWS. 2003: CD004423.

• LOCAL GUIDELINE: JHH_JHCH_BH_0057: FASTING PRIOR TO ANAESTHESIA / SEDATION

• NYGREN J, THORELL A, & LJUNGQVIST O. PREOPERATIVE ORAL CARBOHYDRATE THERAPY. CURRENT OPINION ANAESTHESIOLOGY 2015, 28: 364 – 369
QUESTIONS?
Position of the Proseal LMA with oesophageal drainage channel providing a conduit for regurgitated stomach contents or passage of a nasogastric tube

- Cervical spine
- Pharynx
- Epiglottis
- Vallecula
- Distal airway orifice
- Trachea
- Drain tube tip
- Oesophagus